1. Running RecurDyn and Creating a New Model

- Double-click the RecurDyn icon on the Desktop to run RecurDyn.
- 2. Enter "Free_Falling_Ball" in the Name box and click **OK** to create a new model.

Start RecurDyn	(2)			ame x
New Model -	9	t and B	the model	name
Name	Free_Falling_Ba	Change		
Unit	MMKS(Millimet	er/Kilogram/Newton/Se	cond)	Setting
<u>G</u> ravity	-Y		•	Setting
				<u><u>o</u>k</u>
Open Model				Browse
Recent Mode	ls			Icons 💌
FFlexClutch_In	termediate	Single_Pendulum.rdyr	n Single_Pend	lulum.rdyn
Show 'Start	RecurDyn' Dialo	g when starting		

2. Configuring the Modeling Environment and Creating a Ball

- 1. On the toolbar, click the Grid button to display the grid.
- 2. On the Professional tab, in the Body group, click **Ellipsoid**.
- 3. Click to select **Point**, **Distance** for the modeling option.
- 4. Click the point **(0, 1000, 0)** on the work pane utilizing the displayed grid.
- 5. Enter "100" for the distance of an ellipsoid.

3. Checking the Entity You Created and Changing the Name

- On the database pane to the right, right-click the Ellipsoid Body that you created, and then click Rename.
- 2. Change the name to **Falling_Ball**.

4. Changing the Mass of a Ball

- 1. Right-click the ball that you created, and then click Properties.
- 2. In the Properties of Falling_Ball dialog box, click the Body tab, and click to select User Input for the Material Input Type.
- 3. Enter "1" for the Mass.
- 4. Click **OK** to apply the changes and close the dialog box.

		Exit	
\sim		Cut	Ctrl+X
		Сору	Ctrl+C
		Paste	Ctrl+V
ILX		Delete	Del
1 cm		Translate	Т
	ja ja	• Rotate	R
		Zoom	Z
		View Center	С
	Q	Select Zoom	S
	Ū	Fit	F
		View Control	۱.
		Rendering M	ode 🕨
		Select All	Ctrl+A
		Select Box	
		Select List	
		Mesh	
		Current Direc	tory O
			1000

Properties of Falling_Ball [Current Unit : N/kg/mm/s/deg]								
General	Graphic Property	Drigin & Orie	entatio	n Body				
Mater	Material Input Type		User Input					
Mass	1. 3					Pv		
bx	131528.012430293	Pv	lxy	0.		Pv		
Іуу	131528.012430293	Pv	lyz	0.	Pv			
Izz	131528.012430293	Pv	Izx	0.		Pv		
Center	Marker			CM				
Center								
Inertia	Marker	Create			IM			
Initial	Condition		Init	ial Velocity				
Scope		ОК		Cancel		Apply		

5. Performing Dynamic Analysis

- On the Analysis tab, in the Simulation Type group, click Dyn/Kin (Dynamic/Kinematic Analysis).
- 2. In the dialog box, click the General tab, and enter "1" for the End Time.
- 3. Click Simulate.

	<u> </u>	8. 🔶 - 🧶 - !	ब् 🄞						
	Home Sul	bEntity Analysi	s Professio	onal		Durability	CoLink	AutoDesign	Co
	1 1	🗊 👖 🖣	🕂 👼						►
Eigen	FRA D	OE Scenario I	Pre Static	Dyn/Kin	Pause	Resume	Stop	• 💥 🐳 👾 🛙	
		Simulation Type		,	Sim	ulation Con	trol	Ani	matio
Entity		*		*	÷ 5) 🔶 🔍 -	🖶 🙏 🕽	0] 🗂 = 🌑 = 1	Q -
Reference	_falling_ball ×								
free Dy	ynamic/Kinem	atic Analysis				<u> </u>			
G	Seneral Param	ieter							
				2=					
	End Time		1.	U		Pv			
	Step		100.			Pv			
	Plot Multipli	er Step Factor	1.			PV			
	Output Fi	ile Name						•	
	[Include								
	🔲 Static Ana	alysis					\sim		
	📃 Eigenvalu	ie Analysis					\leftarrow		
	🗹 State Mat	rix						4	
	Frequenc	y Response Analysis	5					//	
	Hide Recu	urDyn during Simula	ation						
	Display A	nimation							
	- Gravity								
	χ 0.	Pv Y	-9806.65	Pv Z).	Pv	•	•	
	Unit	Newton -	Kilogram - Milli	meter - Secor	nd				
			3						
			Simulate	ОК		Cancel			
		V							

6. Creating a Scope and Checking the Results Graph on the Work Screen

1. On the Analysis tab, in the Scope group, click **Entity**.

ion Ty

- 2. In the Scope Entity dialog box, enter "Distance" in the Name box.
- 3. Click the **Et** button next to the Entity Name box to select the created ellipsoid.
- 4. Click to select Pos TY for Component (the ball position in the y-direction).
- 5. Click to select Ground.InertiaMarker for Reference Frame.
- 6. Select the Display check box and click **OK** to apply the changes.

Analysis	Professional	Flexible	Durability	CoLink AutoDesign	Communicator	Particles	Toolkit	Customize	
nario Pre	Static Dyn/Ki	n Pause	Resume Stop			Mode SI Repeat	nape 1	Plot	Point To P int Gap
on Type		I S	im Control	I Animation	n Control	l Eigen Va	ilue Animatio	n i Plot i	Scope
Scope Ent	tity Distance	-2		🗡 Distance	Ball po	sition	n the y	-directi	on over time
Entity Nam	e Falling_B	all	Et 3	<u>_</u>	1 1		-Pos TY	· #1	
Componer	nt Pos_TY	4		1000.00)				
	Frame Ground.	nertiamarki	5	0.00					
	ок 6	Cancel		→ -1000.00 -2000.00)				
				-3000.00)				
				-4000.00	0.00 0.10 0.20	0.30 0	.40 0.50 Time	0.60 0.7	70 0.80 0.90 1.00
				X: <u>-99999</u> .	Y: 1000.				

7. Checking the Results Graph in Plot - Position

- 1. On the Analysis tab, in the Plot group, click Plot.
- 2. On the Plot database pane to the right, click Bodies, click Falling_Ball, and then double-click Pos_TY.
- 3. Click the **Data Editor** button.
- 4. Scroll the data sheet that appears below to the right and check the ball position on the y-axis when time is 1 second.

8. Checking the Results Graph in Plot - Velocity, Acceleration

- 1. Click Add.
- 2. For the added chart, on the Plot database pane to the right, click Bodies, click Falling_Ball, and then double-click Vel_TY.
- 3. Double-click Acc_TY as in step 2.
- 4. Click the Data Editor button.
- 5. Check the results on the data sheet below when time is 1 second.

9. Analytical Solution

- Refer to the analysis results of RecurDyn and calculate kinetic energy when time is 1 second.
 - s=Distance
 - ► a=Acceleration
 - ► t=Time
 - v=Velocity
 - ▶ m=mass

RecurDyn Results

```
Distance traveled after 1 second : 2903.32 mm
Velocity after 1 second : -9806.6 mm/s
Acceleration after 1 second : -9806.6 mm/s^2
```

Analytical Solution $s = \frac{1}{2}(at^{2}) = 2903.32$ $v = at = 9806.6 \ mm/s$ $a = g = 9806.6 \ mm/s^{2}$ $KE = \frac{1}{2}mv^{2} = \frac{1}{2} \times 1kg \times (9806.6 \ mm/s)^{2} = 4.8085e7(kg \cdot mm^{2}/s^{2})$ Conversion to N: $1N = 1(kg \cdot m/s^{2})$ $KE = 4.8085e7 \times [\left(kg \cdot \frac{mm^{2}}{s^{2}}\right)(\frac{1m}{100\text{ mm}})] \times mm = 48085.2 \ N \cdot mm$