1. Running RecurDyn and Creating a New Model

- Double-click the RecurDyn icon on the Desktop to run RecurDyn.
- 2. Enter "Inclined_Plane" in the Name box and click **OK** to create a new model.

Start RecurDyn	(2)				x
New Model -			the mode	l name	
Name	Inclined_Plane	Chan	ge		
Unit	MMKS(Millimet	er/Kilogram/Newton/	Second)	▼ Se	tting
<u>G</u> ravity	-Y			▼ Se	tting
					<u>о</u> к
Open Model				Br	owse
Recent Mode	ls			Icons	-
		¢,		(
Spring_Dampe	r_System.rdyn	Free_Falling_Ball.ro	lyn Four_E	Bar_Link.rdyn	
					-
Show 'Start RecurDyn' Dialog when starting					

2. Creating a Box Body

- On the Home tab, in the Working Plane group, enter "50" for the XGridSize and YGridSize coordinates respectively.
- 2. On the toolbar, click the Grid button to display the grid.
- 3. On the Professional tab, in the Body group, click Box.
- 4. Click point (1000, 0, 0), and then click point (1200, 100, 0) on the work pane to create a box.

3. Creating a Constraint (Creating a Translate Joint)

- On the Professional tab, in the Joint group, click Translate.
- 2. Click Ground and then click Body1 on the work pane.
- 3. Click the origin **(1100, 50, 0)** on the work pane.
- 4. Drag the translate joint to point **(1, 0, 0)** and select it on the work pane.

4. Applying an Inclined Plane to the Box Body

- On the work pane, drag the mouse to select the box body and the joints.
- 2. On the toolbar, click the **Basic Object Control** button.
- 3. In the Basic Object Control dialog box, click the Rotate tab.
- 4. Enter "30" for the Degree.
- Select the box body and joints as in step 1. Rotate the box body and joints 30 degrees counterclockwise about the origin (0, 0, 0)(Ground Inertia) along the z-axis by clicking the corresponding button.
- 6. Click the **X** button to close the dialog box.

5. Performing Dynamic Analysis

- 1. On the Analysis tab, in the Simulation Type group, click Dyn/Kin.
- 2. In the dialog box, click the General tab, and enter "1" for the End Time.
- 3. Click Simulate to run the simulation.

Dynamic/Kinematic Analysis					
General Parameter					
End Time					
Step	100. Pv				
Plot Multiplier Step Facto	r 1. Pv				
📄 Output File Name					
_ Include					
Static Analysis					
Eigenvalue Analysis					
State Matrix					
Frequency Response Analysis					
Hide RecurDyn during Simulation					
Display Animation					
Gravity					
х 0. Ру	γ -9806.65 Pv Z 0. Pv				
Unit Nev	Unit Newton - Kilogram - Millimeter - Second				
Simulate OK Cancel					

6. Checking the Acceleration of a Box on an Inclined Plane

- 1. On the Analysis tab, in the Plot group, click Plot.
- 2. On the Plot database pane, click Joint, click TraJoint1, and then double-click Acc1_Relative to create a graph.
- 3. Click TraceData.
- 4. Click to select the created graph.
- 5. Check the y-value (acceleration of the box) in the Trace Data dialog box.

7. Applying Friction

- Click the Inclined_Plane.rdyn tab to switch to the RecurDyn modeling screen.
- 2. Select TraJoint1 on the work pane and press P. When the Properties of TraJoint1 dialog box appears, click the Joint tab and select the Include Friction check box.
- 3. Click Sliding & Stiction.
- 4. In the Translational Joint Friction dialog box, enter "0.2" for the Dynamic Friction Coefficient.
- 5. Click Close.
- 6. Click **OK** to apply the changes.

8. Performing Dynamic Analysis

- 1. On the Analysis tab, in the Simulation Type group, click Dyn/Kin.
- 2. In the dialog box, click the General tab, and enter "1" for the End Time.
- 3. Click Simulate to run the simulation.

Dynamic/Kinematic Analysis					
General Parameter					
End Time					
Step	100. Pv				
Plot Multiplier Step Facto	r 1. Pv				
📄 Output File Name					
_ Include					
Static Analysis					
Eigenvalue Analysis					
State Matrix					
Frequency Response Analysis					
Hide RecurDyn during Simulation					
Display Animation					
Gravity					
х 0. Ру	γ -9806.65 Pv Z 0. Pv				
Unit Nev	Unit Newton - Kilogram - Millimeter - Second				
Simulate OK Cancel					

9. Checking the Acceleration of a Box on an Inclined Plane

- 1. On the Analysis tab, in the Plot group, click Plot.
- 2. On the Plot Database pane, click Joint, click TraJoint1, and then double-click Acc1_Relative to create a graph.
- 3. Click TraceData.
- 4. Click to select the created graph.
- Check the y-value (acceleration of the box when friction is applied) in the Trace Data dialog box.

10. Analytical Solution

- Calculating acceleration when friction is not applied
- Calculating acceleration when friction is applied

Analysis Results of RecurDyn

- When friction is not applied : -4903.32 mm/s^2
- When friction is applied : -3204.76 mm/s^2

Calculating acceleration when friction is not applied

 $\sum F_x = ma_x$

 $-mg \cdot \sin \theta = ma_x$

 $a_x = -g\sin\theta$

 $a_x = -9806.65 \sin 30$

 $a_x = 4903.32 \ mm/s^2$

Calculating acceleration when friction is applied

$$\sum F_x = ma_x: F_f - mg \cdot \sin \theta = ma_x$$

$$\mu_d \cdot N - mg \cdot \sin \theta = ma_x$$
$$\mu_d \cdot mg \cdot \cos \theta - mg \cdot \sin \theta = ma_x$$

$$\mu_d \cdot \cos \theta - \sin \theta = \frac{a_x}{g}$$
$$a_x = (\mu_d \cos \theta - \sin \theta) \cdot g$$
$$a_x = (0.2 \cos 30 - \sin 30) \cdot (-9806.65)$$
$$a_x = -3204.76 \ mm/s^2$$